
Package: topdowntimeratio (via r-universe)
September 9, 2024

Type Package

Title Top-Down Time Ratio Segmentation for Coordinate Trajectories

Version 0.1.0

Description Data collected on movement behavior is often in the form
of time- stamped latitude/longitude coordinates sampled from
the underlying movement behavior. These data can be compressed
into a set of segments via the Top- Down Time Ratio
Segmentation method described in Meratnia and de By (2004)
<doi:10.1007/978-3-540-24741-8_44> which, with some loss of
information, can both reduce the size of the data as well as
provide corrective smoothing mechanisms to help reduce the
impact of measurement error. This is an improvement on the
well-known Douglas-Peucker algorithm for segmentation that
operates not on the basis of perpendicular distances. Top-Down
Time Ratio segmentation allows for disparate sampling time
intervals by calculating the distance between locations and
segments with respect to time. Provided a trajectory with
timestamps, tdtr() returns a set of straight- line segments
that can represent the full trajectory. McCool, Lugtig, and
Schouten (2022) <doi:10.1007/s11116-022-10328-2> describe this
method as implemented here in more detail.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports data.table (>= 1.9.8), geodist (>= 0.0.4), lubridate,
magrittr, stats

Depends R (>= 4.1)

RoxygenNote 7.2.1

Suggests spelling, testthat

Language en-US

Repository https://daniellemccool.r-universe.dev

RemoteUrl https://github.com/daniellemccool/topdowntimeratio

1

https://doi.org/10.1007/978-3-540-24741-8_44
https://doi.org/10.1007/s11116-022-10328-2

2 getSegments

RemoteRef HEAD

RemoteSha 2c8148b162d46a41279a64d6273eb4fd91178887

Contents
getSegments . 2
getSegsExtra . 3
iterate . 4
meanFilter . 5
medianFilter . 5
radiusOfGyrationDT . 6
setup . 7
splitDiffTime . 7
tdtr . 8

Index 10

getSegments Get Segments

Description

Extract segment info from the segmented data.table.

Usage

getSegments(
data,
coord.type = c("coordinate", "distance", "both"),
group = FALSE

)

Arguments

data data.table returned from function tdtr()

coord.type return actual coordinates, relative distance, or both (see Details)

group separate by group, default is FALSE

Details

Segment location information can be either in lat/lon coordinates, or expressed in terms of distance
for a more anonymous presentation of small trajectories. (Full anonymity is not guaranteed as
sufficiently long trajectories with small error parameters can provide enough data to match against
a map.)

getSegsExtra 3

Value

data.table with segments only, containing information about the start and end locations, start and
end time and distance covered by the segment

Examples

df <- data.frame(entity_id = rep(1, 12),
timestamp = c(1, 2, 4, 10, 14, 18, 20, 21, 24, 25, 28, 29),
lon = c(5.1299311, 5.129979, 5.129597, 5.130028, 5.130555, 5.131083,

5.132101, 5.132704, 5.133326, 5.133904, 5.134746, 5.135613),
lat = c(52.092839, 52.092827, 52.092571, 52.092292, 52.092076, 52.091821,

52.091420, 52.091219, 52.091343, 52.091651, 52.092138, 52.092698))
First generate segments
res30 <- tdtr(df,

group_col = NULL,
max_error = 30)

Then extract a data.table of segments
getSegments(res30)

Calculating distance instead of coordinates
segs <- getSegments(res30, coord.type = "distance")
segs
plot(c(0, 700), c(0, 200), col = "white",

xlab = "East-West distance",
ylab = "North-South distance")

with(segs,
segments(seg_start_lon_dist, seg_start_lat_dist,
seg_end_lon_dist, seg_end_lat_dist))

getSegsExtra Get Segments with calculated data

Description

This function calculates various segment-level metrics that require the raw data before returning
a data.table with the segments and the calculated results. Calculates speed, bearing and radius of
gyration information.

Usage

getSegsExtra(
data,
coord.type = c("coordinate", "distance", "both"),
group = FALSE

)

4 iterate

Arguments

data data.table returned from function /codetdtr

coord.type return actual coordinates, relative distance, or both

group Separate by group, default is FALSE

Value

data.table of segments, annotated with segment-level information on distance, mean and variance
of immediate bearing difference, total bearing variance over the segment, mean, maximum and
variance of calculated speed in meters per second, percentage of zero-speed entries, whether the
segment consists of fewer than 3 locations, and the time-weighted radius of gyration.

Examples

df <- data.frame(entity_id = rep(1, 12),
timestamp = c(1, 2, 4, 10, 14, 18, 20, 21, 24, 25, 28, 29),
lon = c(5.1299311, 5.129979, 5.129597, 5.130028, 5.130555, 5.131083,

5.132101, 5.132704, 5.133326, 5.133904, 5.134746, 5.135613),
lat = c(52.092839, 52.092827, 52.092571, 52.092292, 52.092076, 52.091821,

52.091420, 52.091219, 52.091343, 52.091651, 52.092138, 52.092698))
First generate segments
res100 <- tdtr(df,

group_col = NULL,
max_error = 100)

Then extract a data.table of segments
getSegsExtra(res100)

iterate Perform one iteration of segmentation. Updates by reference and
should be an internal function.

Description

Perform one iteration of segmentation. Updates by reference and should be an internal function.

Usage

iterate(data, max_error)

Arguments

data data.table that has been setup by setup

max_error stopping criteria from tdtr

meanFilter 5

meanFilter Mean filter

Description

Mean filter

Usage

meanFilter(coord, n = 3)

Arguments

coord A vector of coordinates over which to apply a mean filter

n The number of values to average

Value

A vector of mean-averaged coordinates

medianFilter Median filter

Description

Median filter

Usage

medianFilter(coord, n = 3)

Arguments

coord A vector of coordinates over which to apply a mean filter

n The number of values to average (best when odd-numbered)

Value

A vector of median-averaged coordinates

6 radiusOfGyrationDT

radiusOfGyrationDT Radius of Gyration

Description

Calculates the time-weighted radius of Gyration provided a data.table containing latitude, longitude
and a timestamp. This is the root-mean-square time-weighted average of all locations. Weighting
by time is provided to adjust for unequal frequency of data collection.

Usage

radiusOfGyrationDT(lat_col, lon_col, timestamp, dist_measure = "geodesic")

Arguments

lat_col Time-ordered vector of latitudes

lon_col Time-ordered vector of longitudes

timestamp Timestamps associated with the latitude/longitude pairs

dist_measure Passed through to geodist::geodist_vec, One of "haversine" "vincenty", "geodesic",
or "cheap" specifying desired method of geodesic distance calculation.

Details

Time-weighted RoG is defined as√∑
i wj × dist([lon, lat], [lonj , latj])∑

i wj

Where

lon =

∑
j wj lonj∑

j wj
and lat =

∑
j wj latj∑

j wj

And the weighting element wj represents half the time interval during which a location was recorded

wj =
tj+1 − tj−1

2

Value

Time-weighted radius of gyration

Examples

Inside a data.table
dt <- data.table::data.table(

lat = c(1, 1, 1, 1, 1),
lon = c(1, 1.5, 4, 1.5, 2),
timestamp = c(100, 200, 300, 600, 900)

setup 7

)
dt[, radiusOfGyrationDT(lat, lon, timestamp)]
As vectors
radiusOfGyrationDT(

c(1, 1, 1, 1, 1),
c(1, 1.5, 4, 1.5, 2),
c(100, 200, 300, 600, 900)
)

setup Set up a data.table for iterative segmentation

Description

Set up a data.table for iterative segmentation

Usage

setup(data)

Arguments

data A data.frame or data.table containing lat, lon and timestamp

Value

A data.table with numeric timestamp, and an initial segment

splitDiffTime Split the difference when it comes to difftimes

Description

Averages out time differences between successive locations. This is useful in calculating the time-
weighted Radius of Gyration, as it provides a method of using both the first and last locations. This
assumes that the location is measured at a given time period and will account for half of the time
difference occurring between this location and the one immediately preceding, as well as half the
time difference occurring between this location and the one immediately following.

Usage

splitDiffTime(timestamp)

Arguments

timestamp a duration, period, difftime or interval

8 tdtr

Value

the averaged difftime of same length

tdtr Perform Top-Down Time Ratio segmentation

Description

Perform Top-Down Time Ratio segmentation

Usage

tdtr(
data,
col_names = list(entity_id_col = "entity_id", timestamp_col = "timestamp", latitude_col

= "lat", longitude_col = "lon"),
group_col = "state_id",
max_segs = 5000,
n_segs = max_segs,
max_error = 200,
add_iterations = FALSE

)

Arguments

data is a data.frame or data.table with timestamp, lat and lon

col_names named list with existing column names for timestamp, latitude and longitude
column (these are changed to ’timestamp’, ’lat’ and ’lon’ respectively)

group_col NULL for no grouping, or string column name representing a grouping in the
data where initial segments will be drawn.

max_segs with maximum number of segments allowed, default is 5000

n_segs used to generate a specific number of segments

max_error used as stopping criteria, default is 200

add_iterations Add iterations to previous tdtr run

Value

data.table with segment information

tdtr 9

Examples

df <- data.frame(person = rep(1, 12),
time = c(1, 2, 4, 10, 14, 18, 20, 21, 24, 25, 28, 29),
longitude = c(5.1299311, 5.129979, 5.129597, 5.130028, 5.130555, 5.131083,

5.132101, 5.132704, 5.133326, 5.133904, 5.134746, 5.135613),
lat = c(52.092839, 52.092827, 52.092571, 52.092292, 52.092076, 52.091821,

52.091420, 52.091219, 52.091343, 52.091651, 52.092138, 52.092698))
Generate segments under a max error of 100m
res100 <- tdtr(df,

col_names = list(entity_id_col = "person",
timestamp_col = "time",
latitude_col = "lat",
longitude_col = "longitude"),

group_col = NULL,
max_error = 100)

Generate segments under a max error of 30m
res30 <- tdtr(df,

col_names = list(entity_id_col = "person",
timestamp_col = "time",
latitude_col = "lat",
longitude_col = "longitude"),

group_col = NULL,
max_error = 30)

plot(dflon, dflat)
segments(res100$seg_start_lon, res100$seg_start_lat,

res100$seg_end_lon, res100$seg_end_lat, col = "blue")
segments(res30$seg_start_lon, res30$seg_start_lat,

res30$seg_end_lon, res30$seg_end_lat, col = "red")

Index

getSegments, 2
getSegsExtra, 3

iterate, 4

meanFilter, 5
medianFilter, 5

radiusOfGyrationDT, 6

setup, 7
splitDiffTime, 7

tdtr, 8

10

	getSegments
	getSegsExtra
	iterate
	meanFilter
	medianFilter
	radiusOfGyrationDT
	setup
	splitDiffTime
	tdtr
	Index

